
Thermal Materials

導熱材料

導熱墊片AT系列(通用型)

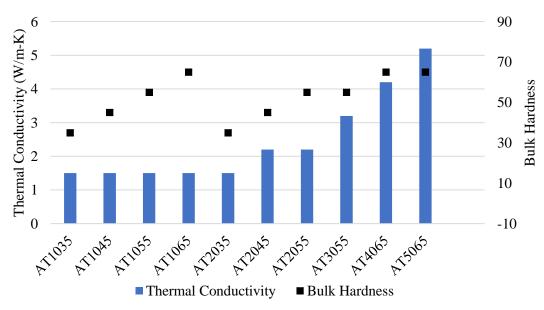
具有一定導熱係數和柔韌性,因材料具有自黏性,避免背膠對導熱性能的影響,主要應用於半導體器件與散熱器間的縫隙填充,提高器件熱量傳遞效率。

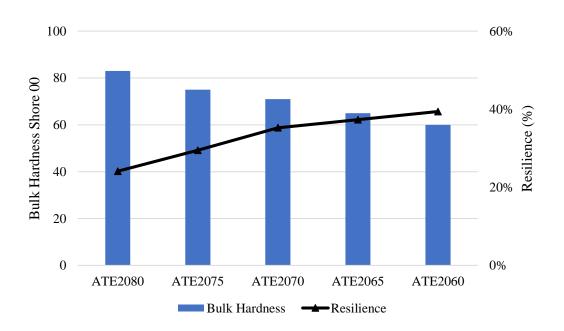
導熱墊片應用領域廣泛,光電產業的戶外LED照明及LCD TV的機構件和電源供應器,CD-ROM/DVD冷卻、熱管道組件、硬盤散熱、信號放大器、手機、其他發熱設備和機殼之間。

導熱凝膠ATP系列

可以以點膠方式至於發熱器件上。在不同高度發熱器件共用同一個散熱器,比導熱墊片 具有更高的裝配效率。凝膠壓縮變形性能,可使發熱器件在裝配和使用過程中受到較低的壓力。 具有有良的觸變性,低熱阻,以及自黏性可用於各類電子器件。

產品系列特性	導熱墊片					導熱凝膠	
	AT10	AT20	AT30	AT40	AT50	ATP150	ATP300
導熱係數W/m-K	1.5	2.2	3.2	4.2	5.2	1.5	3.0
厚度mm	0.25~5	0.25~5	0.25~5	0.25~5	0.25~5	-	-
硬度Shore 00	50~80	50~80	50~80	60~80	60~80	-	-
比重 g/cm³	2.10	2.73	3.00	3.24	3.35	2.70	3.20
玻纖補強	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-
自黏性	0	0	0	0	0	-	-
背膠	0	\circ	\circ	0	0		




Thermal Materials

導熱材料

>AT系列導熱係數 VS 硬度

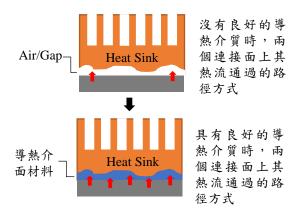
>ATE20 回彈性系列 硬度 VS 回彈性關係

各系列產品可依據客戶需求進行調整,若有需求請洽我司業務人員

Thermal Properties and Testing

導熱性能&測試

散熱方式:


Conduction 傳導 Convection 對流 Radiation 幅射

原理:

未使用導熱介質時,兩個連接面的熱流傳導較慢,導熱效能相對較差

若使用導熱介質連接兩個連接面時,熱流傳導 速度較快也較平均,散熱效能相對提升

各種材料導熱係數:

11 所	港址从劃
材質	導熱係數
鑽石	2300
銀	429
銅	401
金	317
鋁	237
鐵	80.2
水銀/汞	8.54
玻璃	1.4
水	0.613
人類皮膚	0.37
木頭	0.17
軟質橡膠	0.13
玻璃纖維	0.043
空氣	0.026

導熱係數:

在穩定傳熱條件下,1m厚的材料,上下兩側表面的溫度差為1度,在1秒內,通過 $1m^2$ 面積傳遞熱量 (W/m-k)

$$k = \frac{W \cdot L}{S \cdot \Delta T}$$

W為功率;L為試樣厚度;S為試樣截面積;T為溫度

熱阻抗:

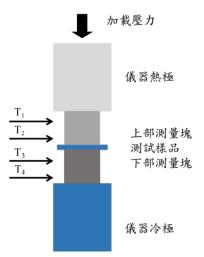
熱量在熱流路徑上傳遞時遇到的阻力,反應介質或介質間傳熱的能力大小,表明1W熱量在1m²的面積內所引起溫的升大小

$$R = \frac{(T2 - T1) \cdot S}{P}$$

R為熱阻抗;T2為熱源溫度;T1為導熱系統端點的 溫度;S為單位面積;P為功率

穩態熱流法:

測試兩平行等溫介面中溫度均勻試樣的理想熱傳導 係數


影響熱阻抗的因素包括:

面積:增加熱接觸面積減小熱阻抗 厚度:增加絕緣體的厚度增加熱阻抗

壓力:在理想條件下增加安裝壓力降低熱阻抗

時間:熱阻抗隨時間遞減

測量:熱阻抗受溫度測量方法影響

